
© 2022 SHL and/or its affiliates. All rights reserved.. 1/15

Rafiq Mohammed Shaik
Test ID: 120450389594801 8050536795 mohammed.rafiq010@gmail.com

Test Date: May 13, 2020

Core Java (Advanced Level)

26 /100

Automata-Selenium

87 /100

Core Java (Advanced Level) 26 / 100

Basic Java

OOPS Concepts

Advanced Java

 33 / 100 0 / 100 40 / 100

Automata-Selenium 87 / 100

Programming Practices

Functional Correctness

 33 / 100 100 / 100

© 2022 SHL and/or its affiliates. All rights reserved.. 2/15

1 Introduction

About the Report

This report provides a detailed analysis of the candidate's performance on different assessments. The tests for this
job role were decided based on job analysis, O*Net taxonomy mapping and/or criterion validity studies. The
candidate’s responses to these tests help construct a profile that reflects her/his likely performance level and
achievement potential in the job role

This report has the following sections:

The Summary section provides an overall snapshot of the candidate’s performance. It includes a graphical
representation of the test scores and the subsection scores.

The Insights section provides detailed feedback on the candidate’s performance in each of the tests. The descriptive
feedback includes the competency definitions, the topics covered in the test, and a note on the level of the
candidate’s performance.

The Response section captures the response provided by the candidate. This section includes only those tests that
require a subjective input from the candidate and are scored based on artificial intelligence and machine learning.

The Proctoring section captures the output of the different proctoring features used during the test.

Score Interpretation

All the test scores are on a scale of 0-100. All the tests except personality and behavioural evaluation provide
absolute scores. The personality and behavioural tests provide a norm-referenced score and hence, are percentile
scores. Throughout the report, the colour codes used are as follows:

Scores between 67 and 100

Scores between 33 and 67

Scores between 0 and 33

© 2022 SHL and/or its affiliates. All rights reserved.. 3/15

2 Insights

Core Java (Advanced Level)

This test measures the knowledge of basic Java constructs, OOP concepts, files and exception handling and advanced
Java concepts like generics, collections, threads, strings and concurrency.

• The candidate is aware of the basic syntax and structure of Core Java (Advanced Level) but needs to put in
substantial effort to improve her/his conceptual knowledge and understanding of algorithms.

• S/he should start by trying to write small programs to improve her/his programming skills.

26 / 100

© 2022 SHL and/or its affiliates. All rights reserved.. 4/15

3 Response

Question 1 (Language: Java Selenium)

A website URL is provided at the end of this section. On any given day, various users log into the website. Some login
attempts are successful while some are not. A web developer has to scale up the website and therefore wants to know
the count of successful logins on a given day. The arrays of usernames and the corresponding passwords used for
different login attempts are given. Find the count of the successful logins for the URL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Code Analysis

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

Readability & Language Best Practices

Line 50: Variables are given very short names.

Performance & Correctness

Line 34,42: Using the '.*' form of import should be
avoided - java.util.*.
Line 73: The code consist of empty blocks.
Line 37,38: Avoid unused imports such as
'org.openqa.selenium.WebElement'
Line 47: A method/constructor shouldnt explicitly
throw java.lang.Exception
Line 73: Avoid catching generic exceptions such as
NullPointerException, RuntimeException, Exception
in try-catch block
Line 73: Avoid empty catch blocks

Automata-Selenium Code Replay 87 / 100

Scores

Programming Practices

Low readability, low on program structure. The source code is
poorly formatted and contains redundant/improper coding
constructs.

25 / 100

Functional Correctness

Functionally correct source code. Passes all the test cases in the
test suite for a given problem.

100 / 100

Final Code Submitted Compilation Status: Pass

// Sample code to read input and write output:

/*
import java.util.*;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;
import java.net.URL;

public class Solution
{
 public static void main(String args[]) throws Exception
 {
 // Use either of these methods for input

 //BufferedReader
 BufferedReader br = new BufferedReader(new InputStreamRea
der(System.in));
 String name = br.readLine(); // Read input from STDIN
 System.out.println("Hello " + name); // Write output to STDOU
T

https://www.myamcat.com/assessments/playback/xPKX9f1OMSfmVM6kbfR4X9w0D6Zem1dSi5Cz8294tcQ=&version=2

© 2022 SHL and/or its affiliates. All rights reserved.. 5/15

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

 //Scanner
 Scanner s = new Scanner(System.in);
 String name = s.nextLine(); // Read input from STDIN
 System.out.println("Hello " + name); // Write output to STDOU
T
 }
}
*/

// Warning: Printing unwanted or ill-formatted data to output will ca
use the test cases to fail

import java.util.*;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;
import java.net.URL;
import java.io.*;
import org.openqa.selenium.Alert;

public class Solution
{
 public static void main(String args[]) throws Exception
 {

 BufferedReader br = new BufferedReader(new InputStreamRea
der(System.in));
 int count = Integer.parseInt(br.readLine());
 String email_ids = br.readLine();
 String passwords = br.readLine();

 String[] emails = email_ids.split(" ");
 String[] password = passwords.split(" ");
 int total_count=0;
 WebDriver driver = new RemoteWebDriver(new URL("http://12
7.0.0.1:9515"),DesiredCapabilities.chrome());
 for(int i=0;i<count;i++){
 driver.get("https://a2z.aspiringminds.com/selenium/q0QvXG
VGeNdiqBEUhVJBML93r_2B_2BiKnkPCd3jMIU2Dm40u_2Bn_2F9jwzL
fMgzelifCPmYWUIUXuP_2FTNk8DMtinGtFs056GsMV81j_2F7BQvND
DApY_3D/login");
 driver.findElement(By.id("email")).sendKeys(emails[i]);
 driver.findElement(By.id("password")).sendKeys(password
[i]);
 driver.findElement(By.id("login_button")).click();

 try{
 Alert alert =driver.switchTo().alert();

© 2022 SHL and/or its affiliates. All rights reserved.. 6/15

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Test Case Execution Passed TC: 100%

Total score

 5/5
100%
Basic(5/5)

0%
Advance(0/0)

0%
Edge(0/0)

Test Cases: Deep Dive

Compilation Statistics

19

Total attempts

14

Successful

5

Compilation errors

0

Sample failed

1

Timed out

6

Runtime errors

Response time: 00:39:15

Average time taken between two compile attempts: 00:02:04

Average test case pass percentage per compile: 12.63%

 if(alert.getText().toLowerCase().contains("successful"))
 total_count++;
 alert.accept();

 }
 catch(Exception e){

 }

 }

 System.out.println(total_count);

 }
}

© 2022 SHL and/or its affiliates. All rights reserved.. 7/15

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 2 (Language: Java Selenium)

AM Store is an online shopping website. A web developer wants to implement the functionality of searching the
products listed. Help the developer find the price of the product given the name by which the product is listed or else
print -1 in case the product does not exist. The website URL is provided at the end of this section.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Code Analysis

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

Readability & Language Best Practices

Line 48: Variables are given very short names.

Performance & Correctness

Line 34,41: Using the '.*' form of import should be
avoided - java.util.*.
Line 38: Avoid unused imports such as
'org.openqa.selenium.support.ui.WebDriverWait'
Line 46: A method/constructor shouldnt explicitly
throw java.lang.Exception

Scores

Programming Practices

Low readability, low on program structure. The source code is
poorly formatted and contains redundant/improper coding
constructs.

25 / 100

Functional Correctness

Functionally correct source code. Passes all the test cases in the
test suite for a given problem.

100 / 100

Final Code Submitted Compilation Status: Pass

// Sample code to read input and write output:

/*
import java.util.*;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;
import java.net.URL;

public class Solution
{
 public static void main(String args[]) throws Exception
 {
 // Use either of these methods for input

© 2022 SHL and/or its affiliates. All rights reserved.. 8/15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

 //BufferedReader
 BufferedReader br = new BufferedReader(new InputStreamRea
der(System.in));
 String name = br.readLine(); // Read input from STDIN
 System.out.println("Hello " + name); // Write output to STDOU
T

 //Scanner
 Scanner s = new Scanner(System.in);
 String name = s.nextLine(); // Read input from STDIN
 System.out.println("Hello " + name); // Write output to STDOU
T
 }
}
*/

// Warning: Printing unwanted or ill-formatted data to output will ca
use the test cases to fail

import java.util.*;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;
import java.io.*;
import java.net.URL;

public class Solution
{
 public static void main(String args[]) throws Exception
 {
 BufferedReader br = new BufferedReader(new InputStreamRe
ader(System.in));
 String product = br.readLine();
 WebDriver driver = new RemoteWebDriver(new URL("http://12
7.0.0.1:9515"),DesiredCapabilities.chrome());
 driver.get("https://a2z.aspiringminds.com/selenium/YEp27CBr
brzp4a91e5BUPgI03_2FxVAv79SAMTir84jce6mzM25ImPx3cisVM1Hr
yZT_2F5C7hnfrI0Ic9uhLeMTtr8V6d5W2re0Tl87dsHXcPY_3D/product
s");
 String product_price = "-1";
 List<WebElement> product_list = driver.findElements(By.class
Name("caption"));
 l1:for(int i=0;i<product_list.size();i++)
 {
 String product_name = product_list.get(i).findElement(By.ta
gName("h3")).getText();
 if(product.equals(product_name)){

© 2022 SHL and/or its affiliates. All rights reserved.. 9/15

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Test Case Execution Passed TC: 100%

Total score

 10/10
100%

Basic(10/10)

0%
Advance(0/0)

0%
Edge(0/0)

Test Cases: Deep Dive

Compilation Statistics

5

Total attempts

3

Successful

2

Compilation errors

0

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:14:53

Average time taken between two compile attempts: 00:02:59

Average test case pass percentage per compile: 28%

 product_price = product_list.get(i).findElement(By.tag
Name("p")).getText().split("\\.")[1];
 break l1;
 }

 }

 System.out.println(product_price);

 }
}

© 2022 SHL and/or its affiliates. All rights reserved.. 10/15

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

Question 3 (Language: Java Selenium)

AM-Social website is a platform where various writers submit their blogs. The writers want to improve the content of
their blogs and hence need some statistical data. They want to find the words that appear ‘n’ number of times in the
blog.

Write an algorithm that returns the words in an alphabetical order with frequency ‘n’ in the blog or returns ‘-1’ if no
word exists with the given frequency. The website link is provided at the end of this section.

1

2

3

4

5

6

7

8

9

Code Analysis

Errors/Warnings

There are no errors in the candidate's code.

Structural Vulnerabilites and Errors

Readability & Language Best Practices

Line 48: Variables are given very short names.

Scores

Programming Practices

High readability, low on program structure. The source code
contains redundant/improper coding constructs and a few
readability and formatting issues.

50 / 100

Functional Correctness

Functionally correct source code. Passes all the test cases in the
test suite for a given problem.

100 / 100

Final Code Submitted Compilation Status: Pass

// Sample code to read input and write output:

/*
import java.util.*;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.openqa.selenium.remote.DesiredCapabilities;

© 2022 SHL and/or its affiliates. All rights reserved.. 11/15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Performance & Correctness

Line 34,42: Using the '.*' form of import should be
avoided - java.util.*.
Line 37,38: Avoid unused imports such as
'org.openqa.selenium.WebElement'
Line 46: A method/constructor shouldnt explicitly
throw java.lang.Exception

import org.openqa.selenium.remote.RemoteWebDriver;
import java.net.URL;

public class Solution
{
 public static void main(String args[]) throws Exception
 {
 // Use either of these methods for input

 //BufferedReader
 BufferedReader br = new BufferedReader(new InputStreamRea
der(System.in));
 String name = br.readLine(); // Read input from STDIN
 System.out.println("Hello " + name); // Write output to STDOU
T

 //Scanner
 Scanner s = new Scanner(System.in);
 String name = s.nextLine(); // Read input from STDIN
 System.out.println("Hello " + name); // Write output to STDOU
T
 }
}
*/

// Warning: Printing unwanted or ill-formatted data to output will ca
use the test cases to fail

import java.util.*;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.ui.WebDriverWait;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;
import java.net.URL;
import java.io.*;

public class Solution
{
 public static void main(String args[]) throws Exception
 {
 BufferedReader br = new BufferedReader(new InputStreamRea
der(System.in));
 int count = Integer.parseInt(br.readLine());
 String required_key = "-1";
 Map<String,Integer> data = new TreeMap<>();
 WebDriver driver = new RemoteWebDriver(new URL("http://12
7.0.0.1:9515"),DesiredCapabilities.chrome());

 driver.get("https://a2z.aspiringminds.com/selenium/KrsKNgJQH

© 2022 SHL and/or its affiliates. All rights reserved.. 12/15

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Test Case Execution Passed TC: 100%

Total score

 6/6
100%
Basic(6/6)

0%
Advance(0/0)

0%
Edge(0/0)

Test Cases: Deep Dive

Compilation Statistics

10

Total attempts

4

Successful

6

Compilation errors

0

Sample failed

0

Timed out

0

Runtime errors

Response time: 00:20:27

Average time taken between two compile attempts: 00:02:03

Average test case pass percentage per compile: 16.67%

pXCO64kCUfF4oSBDdpOIzpVufCnN_2FsA18QCJjHaRqRGT2oDdSGP9
Y1rCJFA4IrFLcYhOrcr5Roj3WcaCiDkX_2FnORqyBWEBt6x4_3D/blog");
 String text = driver.findElement(By.id("content")).getText();
 String[] words = text.toLowerCase().split(" ");

 for(int i=0;i< words.length;i++)
 {
 if(data.containsKey(words[i]))
 data.put(words[i],data.get(words[i])+1);
 else
 data.put(words[i],1);

 }

 Set<String> keys = data.keySet();
 l1:for(String key:keys){
 if(data.get(key)==count){
 required_key = key;
 break l1;
 }
 }
 System.out.println(required_key);

 }
}

© 2022 SHL and/or its affiliates. All rights reserved.. 13/15

Test Case Execution

There are three types of test-cases for every coding problem:

Basic: The basic test-cases demonstrate the primary logic of the problem. They include the most common and obvious cases that an
average candidate would consider while coding. They do not include those cases that need extra checks to be placed in the logic.

Advanced: The advanced test-cases contain pathological input conditions that would attempt to break the codes which have
incorrect/semi-correct implementations of the correct logic or incorrect/semi-correct formulation of the logic.

Edge: The edge test-cases specifically confirm whether the code runs successfully even under extreme conditions of the domain of
inputs and that all possible cases are covered by the code

© 2022 SHL and/or its affiliates. All rights reserved.. 14/15

4 Proctoring

IP Binding

IP

Print Screen

0

ID Card Face
Detected

No

Browser Toggle IP Address

Geolocation Tag

AI Proctoring Information

Print Screen: The number of times the candidate attempted to take a screenshot of the assessment
screen using the “print screen” function on their device. Note: This impacts proctoring
index.

ID Card Face
Detected:

Looks at the candidate images captured during the assessment and flags anywhere
different people appear to be present. Snapshots are included in the report.

Browser Toggle: Either the proportion of time the candidate spent focused on a tab/window other than that
of assessment screen (%), or the number of times the candidate toggled to another
tab/window (count). Note: This impacts proctoring index.

IP Address: Confirms that the candidate took the assessment from the specified IP address(s).

Geolocation Tag: Detects whether the candidate attempted the assessment from a location beyond the
distance set by the administrator.

Web Proctoring Images

